

Welcome to Pathway Analysis’s documentation!

Contents:

	Command Line Interface
	User guide

	Predefined parsers

	Creating custom arguments and parsers

	Methods
	Implemented methods

	Adding a new Method

	Biological Objects

	Statistics Utilities

Indices and tables

	Index

	Module Index

	Search Page

Command Line Interface

User guide

The command line interface has built in help. To display the help, please append -h to the program call, for example:

./patapy.py -h

The help option responds to arguments your provide, so you can get details about your method of choice with:

./patapy.py gsea -h

where gsea is the name of a method;
likewise, you can display help for any of samples specification options (case/control/data), e.g.:

./patapy.py control -h

Predefined parsers

Parsers are defined in command_line.main module.

	
class CLI(parser_name=None, **kwargs)

	The main parser, the one exposed directly to the user.

	
parse_args(args)

	Same as parse_known_args() but all arguments must be parsed.

This is an equivalent of argparse.ArgumentParser.parse_args() [https://docs.python.org/3.6/library/argparse.html#argparse.ArgumentParser.parse_args]
although it does >not< support namespace keyword argument.

Comparing to parse_known_args(), this method handles help
messages nicely (i.e. passes everything to argparse [https://docs.python.org/3.6/library/argparse.html#module-argparse]).

	Parameters

	args – strings to parse, default is sys.argv[1:]

	
produce(unknown_args)

	Post-process already parsed namespace.

You can override this method to create a custom objects
in the parsed namespace (e.g. if you cannot specify the
target class with Argument(type=X), because X depends
on two or more arguments).

You can chery-pick the arguments which were not parsed
by the current parser (e.g. when some step of parsing
depends on provided arguments), but please remember
to remove those from unknown_args list.

Remember to operate on the provided list object (do not
rebind the name with unknown_args = [], as doing so
will have no effect: use unknown_args.remove() instead).

	
class CLIExperiment(parser_name=None, **kwargs)

	Use both: case and control or data to create an Experiment.

	
produce(unknown_args=None)

	Post-process already parsed namespace.

You can override this method to create a custom objects
in the parsed namespace (e.g. if you cannot specify the
target class with Argument(type=X), because X depends
on two or more arguments).

You can chery-pick the arguments which were not parsed
by the current parser (e.g. when some step of parsing
depends on provided arguments), but please remember
to remove those from unknown_args list.

Remember to operate on the provided list object (do not
rebind the name with unknown_args = [], as doing so
will have no effect: use unknown_args.remove() instead).

	
class PhenotypeFactory(parser_name=None, **kwargs)

	Provide {parser_name} samples. Requires a file (or files) with samples.

The files should come in Delimiter Separated Values format
(like .csv or .tsv). The default delimiter is a tab character.
The first column of each file should contain gene identifiers.

To use only a subset of samples from files(s) specify column numbers
(–columns) or sample names (–samples) of desired samples.

	
produce(unknown_args=None)

	Post-process already parsed namespace.

You can override this method to create a custom objects
in the parsed namespace (e.g. if you cannot specify the
target class with Argument(type=X), because X depends
on two or more arguments).

You can chery-pick the arguments which were not parsed
by the current parser (e.g. when some step of parsing
depends on provided arguments), but please remember
to remove those from unknown_args list.

Remember to operate on the provided list object (do not
rebind the name with unknown_args = [], as doing so
will have no effect: use unknown_args.remove() instead).

	
class SingleFileExperimentFactory(parser_name=None, **kwargs)

	Provide both: case and control samples from a single file.

This is just a shortcut for specifying the same file for both:
case and control samples sets. You have to provide –case or
–control (or both) to specify which columns contain controls.

If you specify only one of –case and –control, it will be
assumed that all other columns should be used for the other
set of samples (if you use –case 0,1,2 and your file has
five columns with samples, then columns three and four will
be used to create control samples).

To enable more advanced features, please use control`&`case
options (instead of the currently selected data sub-parser).

	
produce(unknown_args=None)

	Post-process already parsed namespace.

You can override this method to create a custom objects
in the parsed namespace (e.g. if you cannot specify the
target class with Argument(type=X), because X depends
on two or more arguments).

You can chery-pick the arguments which were not parsed
by the current parser (e.g. when some step of parsing
depends on provided arguments), but please remember
to remove those from unknown_args list.

Remember to operate on the provided list object (do not
rebind the name with unknown_args = [], as doing so
will have no effect: use unknown_args.remove() instead).

Creating custom arguments and parsers

Please use command_line.parser module to create custom parsers and arguments.

	
class Argument(name=None, short=None, optional=True, as_many_as=None, **kwargs)

	Defines argument for Parser.

In essence, this is a wrapper for argparse.ArgumentParser.add_argument() [https://docs.python.org/3.6/library/argparse.html#argparse.ArgumentParser.add_argument],
so most options (type, help) which work in standard Python
parser will work with Argument too. Additionally, some nice
features, like automated naming are available.

Worth to mention that when used with MethodParser,
type and help will be automatically deduced.

	
class Parser(parser_name=None, **kwargs)

	Parser is a wrapper around Python built-in argparse.ArgumentParser [https://docs.python.org/3.6/library/argparse.html#argparse.ArgumentParser].

Subclass the Parser to create your own parser.

Use help, description and epilog properties to adjust the help screen.
By default help and description will be auto-generated using docstring
and defined arguments.

Attach custom arguments and sub-parsers by defining class-variables
with Argument and Parser instances.

Example:

class TheParser(Parser):
 help = 'This takes only one argument, but it is required'

 arg = Argument(optional=False, help='This is required')

class MyParser(Parser):
 description = 'This should be a longer text'

 my_argument = Argument(type=int, help='some number')
 my_sub_parser = TheParser()

 epilog = 'You can create a footer with this'

To execute the parser use:

parser = MyParser()

The commands will usually be `sys.argv[1:]`
commands = '--my_argument 4 my_sub_parser value'.split()

namespace = parser.parse_args(commands)

`namespace` is a normal `argparse.Namespace`
assert namespace.my_argument == 4
assert namespace.my_sub_parser.arg == 'value'

Implementation details:

To enable behaviour not possible with limited, plain ArgumentParser
(e.g. to dynamically attach a sub-parser, or to chain two or more
sub-parsers together) the stored actions and sub-parsers are:

	not attached permanently to the parser,

	attached in a tricky way to enable desired behaviour,

	executed directly or in hierarchical order.

Class-variables with parsers will be deep-copied on initialization,
so you do not have to worry about re-use of parsers.

	
attach_argument(argument, parser=None)

	Attach Argument instance to given (or own) argparse.parser.

	
attach_subparsers()

	Only in order to show a nice help, really.

There are some issues when using subparsers added with the built-in
add_subparsers for parsing. Instead subparsers are handled in a
custom implementation of parse_known_args (which really builds upon
the built-in one, just tweaking some places).

	
bind_argument(argument, name=None)

	Bind argument to current instance of Parser.

	
bind_parser(parser, name)

	Bind deep-copy of Parser with this instance (as a sub-parser).

	Parameters

	
	parser (Parser) – parser to be bound as a sub-parser
(must be already initialized)

	name – name of the new sub-parser

This method takes care of ‘translucent’ sub-parsers (i.e. parsers
which expose their arguments and sub-parsers to namespace above),
saving their members to appropriate dicts (lifted_args/parsers).

	
description

	Longer description of the parser.

Description is shown when user narrows down the help
to the parser with: ./run.py sub_parser_name -h.

	
epilog

	Use this to append text after the help message

	
error(message)

	Raises SystemExit with status code 2 and shows usage message.

	
help

	A short message, shown as summary on >parent< parser help screen.

Help will be displayed for sub-parsers only.

	
parse_args(args=None)

	Same as parse_known_args() but all arguments must be parsed.

This is an equivalent of argparse.ArgumentParser.parse_args() [https://docs.python.org/3.6/library/argparse.html#argparse.ArgumentParser.parse_args]
although it does >not< support namespace keyword argument.

Comparing to parse_known_args(), this method handles help
messages nicely (i.e. passes everything to argparse [https://docs.python.org/3.6/library/argparse.html#module-argparse]).

	Parameters

	args (Optional [https://docs.python.org/3.6/library/typing.html#typing.Optional][Sequence [https://docs.python.org/3.6/library/typing.html#typing.Sequence][str [https://docs.python.org/3.6/library/stdtypes.html#str]]]) – strings to parse, default is sys.argv[1:]

	
parse_known_args(args)

	Parse known arguments, like argparse.ArgumentParser.parse_known_args() [https://docs.python.org/3.6/library/argparse.html#argparse.ArgumentParser.parse_known_args].

	Additional features (when compared to argparse implementation) are:

	
	ability to handle multiple sub-parsers

	validation with self.validate (run after parsing)

	additional post-processing with self.produce (after validation)

	
produce(unknown_args)

	Post-process already parsed namespace.

You can override this method to create a custom objects
in the parsed namespace (e.g. if you cannot specify the
target class with Argument(type=X), because X depends
on two or more arguments).

You can chery-pick the arguments which were not parsed
by the current parser (e.g. when some step of parsing
depends on provided arguments), but please remember
to remove those from unknown_args list.

Remember to operate on the provided list object (do not
rebind the name with unknown_args = [], as doing so
will have no effect: use unknown_args.remove() instead).

	
pull_to_namespace_above

	Makes the parser “translucent” for the end user.

Though parsing methods (as well as validate & produce)
are still evaluated, the user won’t be able to see this
sub-parser in command-line interface.

This is intended to provide additional logic separation
layer & to keep the parsers nicely organized and nested,
without forcing the end user to type in prolonged names
to localise an argument in a sub-parser of a sub-parser
of some other parser.

	
validate(opts)

	Perform additional validation, using Argument.validate.

As validation is performed after parsing, all arguments should
be already accessible in self.namespace. This enables testing
if arguments depending one on another have proper values.

	
dedent_help(text)

	Dedent text by four spaces

	
group_arguments(args, group_names)

	Group arguments into given groups + None group for all others

Methods

Implemented methods

	
class GSEA

	Not finished yet.

Adding a new Method

To implement a new method and integrate it with the Command Line Interface provided by this package, please inherit from Method class.

	
class Method

	Defines method of pathway analysis & its arguments.

Simple arguments (like threshold) can be simply defined as
arguments and keyword arguments of __init__.

For example:

class MyMethod(Method)
 def __init__(threshold:float=0.05):
 pass

	For the simple arguments following information will be deduced:

	
	type: will be retrieved from type annotations; currently only
non-abstract types (int, str, float and so on) are supported.
We can implement abstract types from typing if needed.

	default: from keyword arguments.

	help: will be retrieved from docstrings

If you need more advanced options (like aggregation), or just do not
like having a mess in your __init__ signature, please define the
arguments in body of your class using Argument constructor.

For example:

class MyMethod(Method):

 database = Argument(
 type=argparse.FileType('r'),
 help='Path to file with the database'
)

 def __init__(threshold:float=0.05, database=None):
 pass

If help is given in both Argument and docstring,
then the help from Argument() takes precedence over the help in docstrings
(as docstrings should cover not only CLI usage but also describe how to use
the method as a standalone object - to enable advanced users to customize methods).

	
help

	Return string providing help for this method.

The help message shows up when ./run method_name -h.

	
name

	Return method name used internally and in command line interface.

The name should not include any spaces.

Biological Objects

	
class Gene(name, description=None)

	Stores gene’s identifier and description (multiton).

At a time there can be only one gene with given identifier,
i.e. after the first initialization, all subsequent attempts
to initialize a gene with the same identifier will return
exactly the same object. This is so called multiton pattern.

Example

>>> x = Gene('TP53')
>>> y = Gene('TP53')
>>> assert x is y # passes, there is only one gene

	
class Phenotype(name, samples=None)

	Phenotype is a collection of samples of common origin or characteristic.

	An example phenotype can be:

	(Breast_cancer_sample_1, Breast_cancer_sample_2) named “Breast cancer”.

The common origin/characteristics for “Breast cancer” phenotype could be
“a breast tumour”, though samples had been collected from two donors.

	Another example are controls:

	(Control_sample_1, Control_sample_2) named “Control”.

The common characteristic for these samples is that both are controls.

	
as_array()

	Returns: pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] object with data for all samples.

	
classmethod from_file(name, file_object, columns_selector=None, samples=None, delimiter='t', index_col=0, use_header=True, reverse_selection=False, prefix=None, header_line=0, description_column=None)

	Create a phenotype (collection of samples) from csv/tsv file.

	Parameters

	
	name – a name of the phenotype (or group of samples) which will
identify it (like “Tumour_1” or “Control_in_20_degrees”)

	file_object – a file (containing gene expression)
of the following structure:

	names of samples separated by a tab in the first row,

	gene symbol/name followed by gene expression values
for every sample in remaining rows;

an additional column “description” is allowed between genes
column and sample columns, though it has to be explicitly
declared with description_column argument.

	columns_selector (Optional [https://docs.python.org/3.6/library/typing.html#typing.Optional][Callable [https://docs.python.org/3.6/library/typing.html#typing.Callable][[Sequence [https://docs.python.org/3.6/library/typing.html#typing.Sequence][int [https://docs.python.org/3.6/library/functions.html#int]]], Sequence [https://docs.python.org/3.6/library/typing.html#typing.Sequence][int [https://docs.python.org/3.6/library/functions.html#int]]]]) – a function which will select (and return) a subset of
provided column identifiers (do not use with samples)

	samples – a list of names of samples to extract from the file
(do not use with columns_selector)

	reverse_selection – if you want to use all columns but the selected ones
(or all samples but the selected) set this to True

	delimiter (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – the delimiter of the columns

	index_col (int [https://docs.python.org/3.6/library/functions.html#int]) – column to use as the gene names

	use_header – does the file have a header?

	prefix – prefix for custom samples naming schema

	header_line – number of non-empty line with sample names

	description_column – is column with description of present in the file
(on the second position, after gene identifiers)?

	
classmethod from_gsea_file()

	Stub: if we need to handle very specific files,
for various analysis methods, we can extend Phenotype
with class methods like from_gsea_file.

	
class Sample(name, data)

	Sample contains expression values for genes.

	
as_array()

	Returns: one-dimensional labeled array with Gene objects as labels

	
classmethod from_array(name, panda_series, descriptions=False)

	Create a sample from pd.Series or equivalent.

	Parameters

	
	name – name of the sample

	panda_series (Series) – series object where columns represent values of genes and
names are either gene identifiers of tuples:
(gene_identifier, description)

	descriptions – are descriptions present in names of the series object?

	
classmethod from_names(name, data)

	Create a sample from a gene_name: value mapping.

	Parameters

	
	name – name of sample

	data (Mapping [https://docs.python.org/3.6/library/typing.html#typing.Mapping][str [https://docs.python.org/3.6/library/stdtypes.html#str], float [https://docs.python.org/3.6/library/functions.html#float]]) – mapping (e.g. dict) where keys represent gene names

Statistics Utilities

	
ttest_ind_phenotype(case, control, alternative='two-sided')

	Two sided t-test of case sample(s) and mean expression values in base samples across all genes
:type case: Union [https://docs.python.org/3.6/library/typing.html#typing.Union][Phenotype, Sample]
:param case: either Sample of Phenotype object with case sample(s)
:type control: Union [https://docs.python.org/3.6/library/typing.html#typing.Union][Phenotype, Sample]
:param control: either Sample of Phenotype object with control sample(s)
:param alternative: string with the alternative hypothesis, H1, has to be one of the following:

‘two-sided’: H1: difference in means not equal to value (default)
‘larger’ : H1: difference in means larger than value
‘smaller’ : H1: difference in means smaller than value

	Returns: tstatfloat or numpy array in case of multiple case samples - test statisic

	pvalue : float or numpy array in case of multiple case samples - pvalue of the t-test
df : int or float - degrees of freedom used in the t-test

 Python Module Index

 c |
 m |
 s

 		 	

 		
 c	

 	[image: -]
 	
 command_line	

 	
 	
 command_line.main	

 	
 	
 command_line.parser	

 		 	

 		
 m	

 	[image: -]
 	
 methods	

 	
 	
 methods.gsea	

 	
 	
 methods.method	

 	
 	
 models	

 		 	

 		
 s	

 	
 	
 stats	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | M
 | N
 | P
 | S
 | T
 | V

A

 	
 	Argument (class in command_line.parser)

 	as_array() (Phenotype method)

 	(Sample method)

 	
 	attach_argument() (Parser method)

 	attach_subparsers() (Parser method)

B

 	
 	bind_argument() (Parser method)

 	
 	bind_parser() (Parser method)

C

 	
 	CLI (class in command_line.main)

 	CLIExperiment (class in command_line.main)

 	
 	command_line.main (module)

 	command_line.parser (module)

D

 	
 	dedent_help() (in module command_line.parser)

 	
 	description (Parser attribute)

E

 	
 	epilog (Parser attribute)

 	
 	error() (Parser method)

F

 	
 	from_array() (models.Sample class method)

 	from_file() (models.Phenotype class method)

 	
 	from_gsea_file() (models.Phenotype class method)

 	from_names() (models.Sample class method)

G

 	
 	Gene (class in models)

 	
 	group_arguments() (in module command_line.parser)

 	GSEA (class in methods.gsea)

H

 	
 	help (Method attribute)

 	(Parser attribute)

M

 	
 	Method (class in methods.method)

 	methods.gsea (module)

 	
 	methods.method (module)

 	models (module)

N

 	
 	name (Method attribute)

P

 	
 	parse_args() (CLI method)

 	(Parser method)

 	parse_known_args() (Parser method)

 	Parser (class in command_line.parser)

 	Phenotype (class in models)

 	PhenotypeFactory (class in command_line.main)

 	
 	produce() (CLI method)

 	(CLIExperiment method)

 	(Parser method)

 	(PhenotypeFactory method)

 	(SingleFileExperimentFactory method)

 	pull_to_namespace_above (Parser attribute)

S

 	
 	Sample (class in models)

 	
 	SingleFileExperimentFactory (class in command_line.main)

 	stats (module)

T

 	
 	ttest_ind_phenotype() (in module stats)

V

 	
 	validate() (Parser method)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Pathway Analysis’s documentation!

 		
 Command Line Interface

 		
 User guide

 		
 Predefined parsers

 		
 Creating custom arguments and parsers

 		
 Methods

 		
 Implemented methods

 		
 Adding a new Method

 		
 Biological Objects

 		
 Statistics Utilities

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

